69 research outputs found

    Nutritional Quality of Meat Analogues: Results From the Food Labelling of Italian Products (FLIP) Project

    Get PDF
    Nowadays, the interest in meat substitutes is increasing, and consumers perceive their nutritional quality better than that of the animal products they intend to resemble. Therefore, this work aimed to investigate the overall nutritional quality of these new products. Regulated information [Regulation (EU) 1169/2011], the presence/absence of nutrition or health claim and organic declarations, the gluten-free indication, and the number of ingredients were collected from the food labels of 269 commercial meat analogues currently sold on the Italian market. Nutritional information of reference animal meat products was used to compare the nutrition profile. As an indicator of the nutritional quality, the Nutri-Score of meat analogues and counterparts was also determined. Plant-based steaks showed significantly higher protein, lower energy, fats and salt contents, and better Nutri-Scores than the other analogues. All the meat analogues showed a higher fibre content than meat products, while plant-based burgers and meatballs had lower protein contents than meat counterparts. Ready-sliced meat analogues showed a lower salt content than cured meats. Overall, all these plant-based products showed a longer list of ingredients than animal meat products. Results from this survey highlighted that plant-based steaks, cutlets, and cured meats have some favourable nutritional aspects compared to animal-based products. However, they cannot be considered a "tout-court" alternative to meat products from a nutritional point of view

    Protein Quality and Protein Digestibility of Vegetable Creams Reformulated with Microalgae Inclusion

    Get PDF
    Microalgae are considered a valuable source of proteins that are used to enhance the nutritional value of foods. In this study, a standard vegetable cream recipe was reformulated through the addition of single-cell ingredients from Arthrospira platensis (spirulina), Chlorella vulgaris, Tetraselmis chui, or Nannochloropsis oceanica at two levels of addition (1.5% and 3.0%). The impact of microalgae species and an addition level on the amino acid profile and protein in vitro digestibility of the vegetable creams was investigated. The addition of microalgae to vegetable creams improved the protein content and the amino acid nutritional profile of vegetable creams, whereas no significant differences were observed in protein digestibility, regardless of the species and level of addition, indicating a similar degree of protein digestibility in microalgae species despite differences in their protein content and amino acid profile. This study indicates that the incorporation of microalgae is a feasible strategy to increase the protein content and nutritional quality of foods.This research was funded by the ProFuture project (2019ā€“2023 ā€œMicroalgae protein-rich ingredients for the food and feed of the futureā€). The ProFuture project received funding from the European Unionā€™s Horizon 2020 research and innovation programme under grant agreement No 862980. CERCA Programme (Generalitat de Catalunya) also supported this research.info:eu-repo/semantics/publishedVersio

    Effectiveness of enzymatic hydrolysis for reducing the allergenic potential of legume by-products

    Get PDF
    The interest in agri-food residues and their valorization has grown considerably, and many of them are today considered to be valuable, under-exploited sources of different compounds and notably proteins. Despite the beneficial properties of legumes by-products, there are also some emerging risks to consider, including their potential allergenicity. In this work the immunoreactivity of chickpea, pea, and white bean by-products was assessed, and whether the production of enzymatic hydrolysates can be an effective strategy to reduce this allergenic potential. The results presented clearly indicate that the efficiency of this strategy is strongly related to the enzyme used and the food matrix. All legume by-products showed immunoreactivity towards serum of legume-allergic patients. Hydrolysates from alcalase did not show residual immunoreactivity for chickpea and green pea, whereas hydrolysates from papain still presented some immunoreactivity. However, for white beans, the presence of antinutritional factors prevented a complete hydrolysis, yielding a residual immunoreactivity even after enzymatic hydrolysis with alcalase

    Impact of a Shorter Brine Soaking Time on Nutrient Bioaccessibility and Peptide Formation in 30-Months-Ripened Parmigiano Reggiano Cheese

    Get PDF
    Reducing the salt content in food is an important nutritional strategy for decreasing the risk of diet-related diseases. This strategy is particularly effective when applied to highly appreciated food having good nutritional characteristics, if it does not impact either upon sensory or nutritional properties of the final product. This work aimed at evaluating if the reduction of salt content by decreasing the brine soaking time modifies fatty acid and protein bioaccessibility and bioactive peptide formation in a 30-month-ripened Parmigiano Reggiano cheese (PRC). Hence, conventional and hyposodic PRC underwent in vitro static gastrointestinal digestion, and fatty acid and protein bioaccessibility were assessed. The release of peptide sequences during digestion was followed by LCā€“HRMS, and bioactive peptides were identified using a bioinformatic approach. At the end of digestion, fatty acid and protein bioaccessibility were similar in conventional and hyposodic PRC, but most of the bioactive peptides, mainly the ACE-inhibitors, were present in higher concentrations in the low-salt cheese. Considering that the sensory profiles were already evaluated as remarkably similar in conventional and hyposodic PRC, our results confirmed that shortening brine soaking time represents a promising strategy to reduce salt content in PRC

    Cleaning the Label of Cured Meat; Effect of the Replacement of Nitrates/Nitrites on Nutrients Bioaccessibility, Peptides Formation, and Cellular Toxicity of In Vitro Digested Salami

    Get PDF
    Curing salts composed of mixtures of nitrates and nitrites are preservatives widely used in processed meats. Despite many desirable technological effects, their use in meat products has been linked to methemoglobinemia and the formation of nitrosamines. Therefore, an increasing "anti-nitrite feeling" has grown among meat consumers, who search for clean label products. In this view, the use of natural compounds as alternatives represents a challenge for the meat industry. Processing (including formulation and fermentation) induces chemical or physical changes of food matrix that can modify the bioaccessibility of nutrients and the formation of peptides, impacting on the real nutritional value of food. In this study we investigated the effect of nitrate/nitrite replacement with a combination of polyphenols, ascorbate, and nitrate-reducing microbial starter cultures on the bioaccessibility of fatty acids, the hydrolysis of proteins and the release of bioactive peptides after in vitro digestion. Moreover, digested salami formulations were investigated for their impacts on cell proliferation and genotoxicity in the human intestinal cellular model (HT-29 cell line). The results indicated that a replacement of synthetic nitrates/nitrites with natural additives can represent a promising strategy to develop innovative "clean label" salamis without negatively affecting their nutritional value

    Chiral introduction of positive charges to PNA for double-duplex invasion to versatile sequences

    Get PDF
    Invasion of two PNA strands to double-stranded DNA is one of the most promising methods to recognize a predetermined site in double-stranded DNA (PNA = peptide nucleic acid). In order to facilitate this ā€˜double-duplex invasionā€™, a new type of PNA was prepared by using chiral PNA monomers in which a nucleobase was bound to the Ī±-nitrogen of N-(2-aminoethyl)-d-lysine. These positively charged monomer units, introduced to defined positions in Nielsen's PNAs (poly[N-(2-aminoethyl)glycine] derivatives), promoted the invasion without impairing mismatch-recognizing activity. When pseudo-complementary nucleobases 2,6-diaminopurine and 2-thiouracil were bound to N-(2-aminoethyl)-d-lysine, the invasion successfully occurred even at highly Gā€“C-rich regions [e.g. (G/C)7(A/T)3 and (G/C)8(A/T)2] which were otherwise hardly targeted. Thus, the scope of sequences available as the target site has been greatly expanded. In contrast with the promotion by the chiral PNA monomers derived from N-(2-aminoethyl)-d-lysine, their l-isomers hardly invaded, showing crucial importance of the d-chirality. The promotion of double-duplex invasion by the chiral (d) PNA monomer units was ascribed to both destabilization of PNA/PNA duplex and stabilization of PNA/DNA duplexes

    Chiral PNAs with Constrained Open-Chain Backbones

    No full text
    Chiral open-chain PNAs have been shown to have improved properties in terms of control of helical handedness, DNA affinity, sequence selectivity, and cellular uptake. They can be synthesized either using preformed chiral monomers or by means of a submonomeric strategy. The former is preferred when only a stereogenic center is present at C-5, whereas for PNA-bearing substituents at C-2, the submonomeric approach is preferred, since racemization, generally occurring during the solid-phase synthesis, can be minimized by this procedure. Here we describe the protocols for the synthesis of PNA oligomers containing C-2- or C-5- (or both) modified monomers and a GC method for checking the optical purity of C-2-modified PNAs
    • ā€¦
    corecore